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Abstract

Visual tracking is a very important front-end to many vi-
sion applications. We present a new framework for robust
visual tracking in this paper. Instead of just looking for-
ward in the time domain, we incorporate both forward and
backward processing of video frames using a novel time-
reversibility constraint. This leads to a new minimization
criterion that combines the forward and backward simi-
larity functions and the distances of the state vectors be-
tween the forward and backward states of the tracker. The
new framework reduces the possibility of the tracker get-
ting stuck in local minima and signi�cantly improves the
tracking robustness and accuracy. Our approach is general
enough to be incorporated into most of the current tracking
algorithms. We illustrate the improvements due to the pro-
posed approach for the popular KLT tracker and a search
based tracker. The experimental results show that the im-
proved KLT tracker signi�cantly outperforms the original
KLT tracker. The time-reversibility constraint used for
tracking can be incorporated to improve the performance
of optical �ow, mean shift tracking and other algorithms.

1. Introduction

Visual tracking has become more and more important in
computer vision research owing to its wide applications in
visual surveillance and motion analysis. In physics, mo-
tion refers to the act of changing location from one place
to another, relative to a reference point, as measured by a
particular observer in a particular frame of reference; there-
fore, the goal of visual tracking is to �nd and describe the
relative position change of the moving object according to
the recorded video frames. Given that the kinematic and dy-
namic information of the object can not be observed from
the video directly, researchers try to infer the motion in-
formation through some observable properties of the object
under motion, among which the appearance of the object is

probably the most widely used. There are several tracking
algorithms that have been developed based on the assump-
tion that the appearance of the object is unchanged or the
change can be explained using some object motion models.
Most matching based tracking algorithms fall in this cate-
gory, along with the popular KLT [11][17][15] and the mean
shift tracking algorithm [5][6]. To improve the tracking per-
formance, various 2D or 3D appearance models have been
developed to handle the appearance change during track-
ing. Researchers have also incorporated additional knowl-
edge, like camera calibration, scene geometry, and scene
illumination for appearance based tracking. Another kind
of tracking algorithms like the CONDENSATION [8] and
those based on particle �ltering [7] directly incorporate the
dynamic model of the object motion into tracking methods.
These algorithms generally involve an object state transi-
tion model and an observation model, which combines both
motion and appearance models of the object. The dynamic
models used in these algorithms are generally loosely de-
�ned, which are good for general object motion, not just
for a speci�c motion model, like constant speed, constant
acceleration or a random walk.

Researchers have taken various approaches to exploit
and incorporate more information about the true object mo-
tion, like adaptive speed or trajectory prediction models
[19]; however, to the best of our knowledge, a fundamen-
tal characteristic calledtime-reversibilityof object motion
has been ignored in most of the past and current works. The
intuition relies on the idea that, since all the targets of in-
terest are macroscopic solid objects in the physical world
and obey physical laws of classical mechanics that are time-
symmetric, all the motion process of the targets should be
time-reversible; which means that the time-reversed process
satis�es the same dynamical equations as the original pro-
cess. However, most of the existing tracking algorithms
only look forward in the time domain instead of looking
bidirectionally during tracking.

If we look at the tracking problem as a black box shown
in Figure 1, the inputs of the black box are the observations
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Figure 1. An illustration of visual tracking

and object state att � 1, the output is the object state at the
current framet. The process of how the object evolves from
the previous state to the current state is not totally obvious to
the observers due to the limited information contained in the
video data. We claim that irrespective of the nature of object
motion, if we switch the time axis in the physical world, we
can expect that the object will go back to the exactly same
state at timet � 1. Hence, if the tracking strategy does cap-
ture the true object motion during this time interval, which
implies that the object state is well estimated at timet, then
using the same tracking strategy, the backward estimated
object state at timet � 1 should be identical to the forward
state at timet � 1. On the contrary, if the tracking algorithms
does not preserve the time-reversibility characteristic of the
motion process, it is very possible that it has failed to track
the object or may fail soon. In practice, it is very unlikely
for the forward tracking algorithms to maintain the time-
reversibility property with time. A similar idea is used for
evaluating the performance of tracking algorithms in [18].

In this paper, we present a new framework for robust vi-
sual tracking. Instead of just looking forward in the time
domain, we simultaneously perform both the forward and
backward tracking using the time-reversibility constraint.
The new framework reduces the possibility of the tracker
getting stuck in local minima and signi�cantly improves
the tracking robustness and accuracy. We illustrate the im-
provements due to the proposed approach for the popular
KLT tracker and a search based tracker. The experimen-
tal results show that the improved KLT tracker signi�cantly
outperforms the original KLT tracker without demanding
additional computational resources. The proposed time-
reversibility constraint is general enough to be incorporated
into most of the current tracking algorithms, as well as for
computing optical �ow.

Before proceeding further, we clarify the notion of time-
reversibility and distinguish it from backward processing
or smoothing. Some algorithms also consider backward
tracking [16][2]; however, they perform forward and back-

ward tracking separately and then merge the results in order
to get better performance. CONDENSATION and particle
smoothing methods [10][9][7] consider both the past and
future observations to get a smoothed estimate, which also
involves backward processing. There are some other works
using backward tracking in video coding area [13][14];
however, these strategies are not focused on exploiting the
notion of time-reversibility in tracking. The consistent im-
age registration method proposed by Christensen [3] and
Christensen and Johnson [4] is probably the closest to ex-
ploiting time-reversibility in spirit.

In Section 2, we will �rst present a new framework
for tracking using the time-reversibility constraint; then the
new KLT tracker using the time-reversibility constraint will
be described in Section 3; detailed experimental results and
analysis on the new KLT algorithm, compared to the origi-
nal KLT tracker, will be given in Section 4; conclusions and
potential future works are in Section 5.

2. The New Tracking Framework with the
Time-Reversibility Constraint

Many of the current tracking algorithms maximize a like-
lihood function or minimize a cost function. Without loss
of generality, we can formulate the tracking problem using
the Bayesian framework as follows: determine

Ŝt = arg max
St

P(St j Ŝ1;:::;t � 1; Y1;:::;t ) (1)

whereSt is the state of the object at timet. The state
can be one or more templates, state vectors or probabil-
ity density functions that describe the status of the object
at a speci�c time; Yt is the observation at timet; usu-
ally it is the image frame or some abstracted features. The
above framework can represent most of the current forward-
looking tracking algorithms; however, as stated above, this
framework ignores the relationship between the forward
and backward tracking results, which exhibits an important
characteristic called time-reversibility present in all kinds
of object motions including constant, abrupt or smoothly
changing motions. Hence, we present the new tracking
framework below:

Ŝt = arg max
St

P(St j Ŝ1;:::;t � 1; Y1;:::;t )

+ P(Sb
t � 1 j St ; Yt;t � 1) + �L (Ŝt � 1; Sb

t � 1) (2)

whereSb
t � 1 is the backward estimate at timet � 1 andL(�)

is the likelihood between the forward and backward esti-
mation results; the �rst term is the same as in the forward-
only tracking approach; the second term is the dual term
representing tracking backward from timet to t � 1; but
sometimes it is not enough to achieve or approach time-
reversibility with only the �rst two terms. To improve the



performance further, we need to explicitly add a constraint
derived from the difference between the forward estimate
Ŝt � 1 and the backward estimateSb

t � 1, which yields the
third term in the above equation.

Since the likelihood functions usually have multiple lo-
cal minima, especially for high dimensional data like im-
ages, the tracker may get stuck in some local minima in
practice. We believe that the incorporation of these addi-
tional constraints reduces a fair number of local minima.

In traditional Bayesian smoothing algorithms, re-
searchers aim to compute the following:

Ŝt = arg max
St

P(St j Ŝ1;:::;t � 1; Y1;:::;T ) (3)

whereT is larger thant. We compare Bayesian smooth-
ing and the proposed tracking framework with the time-
reversibility constraint as below:

� First, Bayesian smoothing requires future data to im-
prove the performance while there is no need for
more data in the tracking algorithms using the time-
reversibility constraint. The time-reversibility con-
straint provides more modeling constraints.

� Second, Bayesian smoothing requires much more
computation than Bayesian �ltering, not only due to
more data being processed but also due to the opti-
mization process which looks at all the interactions be-
tween each state and observation variables. For parti-
cle smoothing, in general, the computational complex-
ity is O(N 2) while for particle �ltering it is onlyO(N )
[10]. On the contrary, the tracking algorithms using the
time-reversibility constraint generally do not lead to
more computational load unless an exhaustive search
method is used in the optimization process.

There is no contradiction between the time-reversibility
constraint and the Bayesian smoothing strategy. In
Bayesian smoothing, the performance improvement is due
to the backward-�ow of information from future data
while time-reversibility means that the entropy involved in
the motion process is non-increasing. In practice, time-
reversibility is only approximately satis�ed due to noise or
partial observations. Bayesian �ltering or smoothing tries
to minimize the information decrease during tracking [12],
which in effect is similar to using the time-reversibility con-
straint.

3. The New KLT with the Time-Reversibility
Constraint

The basic idea of the Kanade-Lucas-Tomasi (KLT) fea-
ture tracker �rst appeared in Lucas and Kanade's paper [11]
in 1981; it was fully developed by Tomasi and Kanade
[17] in 1991. In 1994, Shi and Tomasi [15] presented a

KLT based method to select good features to track. In the
past decade, KLT is probably the most widely used feature
tracker in many applications, such as structure from motion,
and computation of optical �ow. In this section, we improve
the original KLT algorithm using the time-reversibility con-
straint presented in section 2.

3.1. The Original KLT

The original KLT algorithm assumes that the intensity of
the features remains constant when a camera moves, that is,
I (x; y) = J (x + �; y + � ) assuming that the motion between
two consecutive frames can be described as pure translation.
This leads to the following objective function:

(�̂; �̂ ) = arg min
�;�

Z Z

W
[J (x + �; y + � ) � I (x; y)]2

� w(x; y)dxdy (4)

Later, a symmetric expression is used to derive the solution
[1]:

(�̂; �̂ ) = arg min
�;�

Z Z

W
[J (p +

d
2

) � I (p �
d
2

)]2

� w(p)dp (5)

wherep = ( x; y)T and d = ( �; � )T and the weighting
function w(p) is usually set to 1 over the domainW . For
simplicity we will omit all the function variables andw(p)
in the following. We also use the discrete form for the inte-
grals involved in the derivations. Using a �rst order Taylor
expansion to linearize the above nonlinear objective func-
tion and setting the derivative with respect tod to zero, we
get:

X X

W

(J � I + gT d)g = 0 (6)

g = ( r
I + J

2
)T (7)

This can be rearranged as:

Zd = e (8)

where

Z =
X X

W

ggT (9)

e =
X X

W

(I � J )g (10)

We notice that the �nal solution seems to smooth the for-
ward and backward tracking results by simply averaging
them. In general, the forward KLT results will differ from
the backward KLT results due to asymmetry in image infor-
mation.



The symmetric expression in (4) may be confused with
the time-reversibility constraint proposed in this paper.
However, we can see from (4) that after switching to sym-
metric expression, the objective function tries to minimize
the difference betweenI (p � d

2 ) andJ (p + d
2 ) while the

original purpose is to �nd the best match for the feature cen-
tering atI (p). The notion of symmetry used here does not
imply time-reversibility and vise versa.

3.2. The New KLT using the Time-Reversibility
Constraint

3.2.1 The Derivation of the New KLT algorithm

Following the original de�nitions in KLT, we propose a new
objective function for KLT using the time-reversibility con-
straint.

(d̂; d̂b ) = arg min
d ;d b

Z Z

W
[J (p + d) � I (p)]2w(p)dp

+
Z Z

W
[I (p + d + db ) � J (p + d)]2w(p)dp

+ � (d + db )T (d + db ) (11)

wheredb is the backward displacement vector when track-
ing from t to t � 1. Assumingd anddb are small, we can
perform the following approximations using the �rst order
Taylor expansion:

I (p + d + db ) � I (p) + r I (d + db )

J (p + d) � J (p) + r J d (12)

By setting the derivatives with respect tod anddb to zero
respectively, we have the following constraints which are
given in their discrete forms:

0 =
X X

W

[H (r H � r J )T + ( r H T r I )db ]

+
X X

W

[(r J T r J + r H T r H )d] + � (d + db )

0 =
X X

W

[H r I T + ( r I T r H )d]

+
X X

W

(r I T r I )db + � (d + db ) (13)

whereH = I � J . Solving these equations, we �nally get:

Ud = "

U = AD � 1C + �D � 1C �
1
2

B

" = ( A + �I )D � 1(V � W ) +
1
2

(S � R) (14)

where the de�nitions ofA; B; C; D; V; W; S; R are given
below:

A =
X X

W

(r I )T r I ; B =
X X

W

(r I )T r J ;

C =
X X

W

(r J )T r J ; D =
X X

W

(r J )T r I ;

R =
X X

W

I (r I )T ; S =
X X

W

J (r I )T ;

V =
X X

W

I (r J )T ; W =
X X

W

J (r J )T ; (15)

If we re-write the original KLT equation using the above
de�ned variables, we get:

Z =
1
2

(A + B + C + D);

e =
1
2

(R � S + V � W ); (16)

3.2.2 Comparison to the Original KLT

By comparing the new KLT and the original KLT, we �nd
that although all the variables appear in both the original
and the new KLT equations, the interactions between these
variables are different. The original KLT just linearly com-
bines the forward-only and backward-only mappings while
in the new KLT process, the forward and backward are
performed simultaneously, actually improving the perfor-
mances of each other.

We also note that the new KLT has almost the same com-
putational cost as the original one. In practice, the new KLT
requires lesser computations than the original one because
the required number of iterations is lower to achieve the
same performance.

An interesting observation is that even when� = 0 , the
new KLT still has a completely different expression from
the original KLT. When� = 0 , U and" are:

U = AD � 1C �
1
2

B

" = AD � 1(V � W ) +
1
2

(S � R) (17)

This is due to the second term in (11). In our experiments,
we �nd that the new KLT outperforms the original KLT
even when� equals to 0. The reason is that optimizing the
�rst two terms in (11) still involves the interaction between
forward and backward processing, implicitly enforcing the
time-reversibility constraint. In fact, the second and third
terms in (11) both improve the tracking performance. We
will further study their contributions in section 4.

3.3. Good Features to Track

Shi and Tomasi [15] presented a method to select good
features to track. The method is based on the rationale that



if both the eigenvalues of the matrixR as de�ned above
are larger than some threshold, which implies that the KLT
equation can be robustly solved, then the feature in general
will exhibit complex textures and be good for tracking.

Since the new KLT has the same form as the original
one, we can also judge if a feature is good for tracking or
not. However, in both symmetric KLT and the proposed
KLT, the corresponding matrix contains information from
two images, so the explicit physical interpretation of the
eigenvalues is hard to see. Both the original KLT matrix
and the new KLT matrix show good properties in practice
in terms of their stability in solving the equations. We stud-
ied the condition number of the both matrices, which is in
general an indication of good stability if the value is close
to 1. Experimental results show that the condition number
of the new KLT matrix is on the average closer to 1 than the
original KLT. This provides an explanation for the improve-
ment due to the new constraint.

As different tracking algorithms lead to different matri-
ces, so evaluating if a feature is good or not for tracking is
not completely determined by the characteristic of the fea-
ture itself. A bad feature in one algorithm can be good in
the other. In the experiments, we �nd that the proposed new
KLT can track some features well while the original KLT
fails in tracking them.

4. Experimental Results and Discussions

We implemented the new KLT algorithm based on the
latest C code of the original KLT algorithm which is
widely used and can be downloaded from the website:
http://www.ces.clemson.edu/ stb/klt/.

4.1. Performance Evaluation on Clean Sequences

4.1.1 With No Ground Truth

First, we compare the results on the sequence contained in
the KLT code package, which we call `the Table sequence'.
In the Table sequence the camera exhibits a rotation from
left to right. To fairly evaluate the performance, we used
the same set of parameters for both algorithms. We also
disabled some thresholds for removing bad features during
the tracking procedure unless they are out of the image re-
gion.

We selected 200 feature points for both algorithms using
the same method contained in the package which is based
on [15], so the starting feature points are the same for both
algorithms. The iteration number is set to 10 which is suf-
�cient for both algorithms to converge. Figure 2 shows the
results for both algorithms at the starting and ending frames
together with some enlarged details. The feature points are
colored as red dots. We circled the points where the two al-
gorithms differ signi�cantly, say, by more than 3 pixels. By

Figure 2. Tracking results of the original KLT (left column) and
the proposed KLT (right column) using the time-reversibility con-
straint at the starting and ending frames. The green circled points
on the left side differ signi�cantly with the yellow circled points
on the right side. It is easy to see that the new KLT keeps tracking
those points well while the original KLT fails to track them.

visual inspection, we found that the new KLT kept track-
ing well on those points while the original KLT lost track of
them.

4.1.2 With Generated Ground Truth

To further quantitatively evaluate the performance, we use
the �rst frame of the Table sequence to generate a new se-
quence with random translations in both x and y directions.
Therefore all the features points have the same motion as the
generated random translations. Two-level image pyramids
are used in both algorithms. The results of the algorithms
are then compared with ground truth. The effect of differ-
ent � has been studied on two generated sequences with
different motions. We summarize the quantitative results in
Table 1 and 2. For the sequence with translation distributed
between 0 to 12, the mean error curves with respect to� are
plotted in Figure 3 with red and blue lines for the original
and new KLT respectively. As we can see, the new KLT
using the time-reversibility constraint consistently outper-
forms the original KLT in different� values. The average
improvement is more than 35%.

In this sequence, the change due to� is quite small be-



error � = 0 0.05 0.2 2 20
n 1427 1427 1427 1427 1426

mean original KLT 0.2351 0.2351 0.2351 0.2351 0.2353
new KLT 0.1429 0.1424 0.1435 0.1487 0.1429

variance original KLT 1.7419 1.7419 1.7419 1.7419 1.7431
new KLT 0.7935 0.7936 0.7928 0.7983 0.7898

Table 1. The generated random translation is uniform between 0
and 12 pixels in both directions, where we can see the best perfor-
mance is achieved when� = 0 :05. The value of� is normalized
by the size of the feature window.n is the number of points in-
volved in the experiment. The value of error is in pixel unit.
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Figure 3. The mean errors of the original KLT and the new KLT.
The red and blue lines are the results for the sequence with trans-
lation uniformly distributed from 0 to 12; the yellow and green
lines are the results for the sequence with translation uniformly
distributed from 0 to 20.

tween� = [0 ; 20]. Comparing the error at� = 0 and others,
there is no big change while the performance is still much
better than the original KLT. This result shows that the sec-
ond term in (11) does contribute to improving the results.
Both the average errors of the original and new KLT meth-
ods on this sequence are quite small, primarily due to the
motion being small translation. From the results, we proba-
bly can say that the improvement on good sequences mainly
comes from the second term.

We generated another sequence with increased transla-
tion magnitude. We can see the improvement due to the
third term in Table 2. We �nd the value of� to achieve the
best performance increased in the new sequence with larger
motion. The mean errors of both algorithms are shown in
yellow and green curves respectively in Figure 3. This re-
sult tells us that the third term helps more when the original
KLT has more dif�culties in tracking than in the situations
where it is easier to track. Figure 4 shows the tracking re-
sults of both algorithms at the ending frame, where� used
in the new KLT equals to 0.2.

Figure 4. Tracking results of the original KLT (left column) and
the proposed improved KLT (right column) at the ending frame on
the generated sequence with known ground truth. The green and
yellow cross signs provide the ground truth positions of the feature
points. The up-left corner of the small red block should overlay on
the center of the cross if tracking were perfect.

error � = 0 0.05 0.2 2 20
n 1235 1232 1231 1233 1237

mean original KLT 1.0973 1.1001 1.1009 1.0974 1.0659
new KLT 0.5019 0.5405 0.4777 0.5066 0.6181

variance original KLT 40.2333 40.3281 40.3601 40.2967 39.2340
new KLT 9.9528 13.7966 9.2691 9.4448 11.3291

Table 2. The generated random translation is uniform between 0
and 20 pixels in both directions, where we can see the best perfor-
mance is achieved at� = 0 :2. The value of� is normalized by the
size of the feature window.n is the number of points involved in
the experiment.The value of error is in pixel unit.

4.2. Performance Comparison on Noisy Sequences

We add Gaussian noise to the sequence with random
translations uniformly distributed between 0 and 12. The
variance of the zero-mean noise is 0.005 which is normal-
ized by the range of the image intensity. Table 3 shows
the results of both algorithms for different� ; and the mean
errors are plotted in Figure 5. It is seen that the best per-
formance is achieved at� = 40, which con�rms the above
conclusion that larger value of� should be used for more
dif�cult sequences. This is because the values of the �rst
two intensity evaluation terms increase for more dif�cult
sequences; thus to make the third term comparable to the
�rst two terms, a larger� is needed. Figure 6 provides the
tracking results of both algorithms, where� equals to 40 in
the proposed new KLT.

4.3. Speed Comparison

The new KLT using the time-reversibility constraint is a
real-time algorithm, which does not add noticeable increase
in computational cost, compared to the original KLT. This
can be expected from the similar linear equations solved in



error � = 0 2 20 40 60
n 1311 1310 1282 1269 1264

mean original KLT 1.3192 1.3158 1.3395 1.3331 1.3210
new KLT 0.9666 0.9278 0.9180 0.9165 0.9306

variance original KLT 11.9968 12.0254 12.3895 12.1590 11.7519
new KLT 2.4290 2.3080 3.3098 3.4253 3.5468

Table 3. Results on the noisy sequence with random translation
uniformly distributed from 0 and 12 pixels in both directions,
where we can see the best performance is achieved at� = 40 .
The value of� is normalized by the size of the feature window.n
is the number of points involved in the experiment. The value of
error is in pixel unit.
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Figure 5. The mean error of the original KLT and the new KLT.
Gaussian noise is added in the sequence with translations uni-
formly distributed from 0 to 12.

Figure 6. The tracking results of the original KLT (left column)
and the improved KLT (right column) on a noisy sequence at the
ending frame. The green and yellow cross points provide the
ground truth positions of the feature points. The up-left corner
of the small red block should overlay on the center of the cross if
tracking were perfect.

both the original and new KLT. We plot the mean error of
both algorithms under different iteration numbers in Figure
7. It can be seen that the new KLT even converges faster
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Figure 7. The mean error of the original KLT and the new KLT
under different iteration numbers from 1 to 10.

than the original KLT although only by a small factor.

4.4. Good Features to Track

We studied the condition number in the original KLT ma-
trix Z and the new KLT matrixU . The condition number
here is de�ned as the absolute ratio of the maximal eigen-
value to the minimal eigenvalue of a matrix. When solving
a linear equation likeM x = � , if the condition number of
M is large, even a small error in� may cause a large error
in x. In the original Table sequence, the average condition
number of the original KLT matrix is about 8.9171 while the
condition number of the new KLT matrix is about 2.6621.
This is based on the evaluations of 200 points across 10
frames. And from Figure 8, we also �nd that the condi-
tion number increases in the original KLT while it remains
nearly constant in the new KLT using the time-reversibility
constraint. We believe that this explains the performance
improvement due to the new constraint, from the view of
numerical computation stability.

4.5. Additional Results on Large Object Tracking

To test the improvement of the new tracking strategy us-
ing the time-reversibility constraint on tracking large ob-
jects, we performed an exhaustive search based tracking
on a generated very noisy sequence. The objective func-
tions used are the same as the original KLT and the new
KLT. The difference is in that in KLT, a gradient decent like
search method is used while an exhaustive search method
is used here. The results are shown in Figure 9. We can
see that using the time-reversibility constraint, the block
can be tracked well while it can not be tracked without
such a constraint. Thus we believe that combining the time-
reversibility constraint with some large-object trackingal-
gorithms will improve the tracking performance too.
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Figure 8. The average condition number of the matrices for 200
points at each frame during tracking.

Figure 9. Tracking the black block by searching in a neighbor-
hood around the object using a �xed appearance model. The top
row shows the result without the time-reversibility constraint at
the starting and ending frames, which fails to track the block. The
bottom row shows the result using the time-reversibility constraint
at the corresponding frames, which obtained good tracking of the
block.

5. Conclusions

In this paper, we present a new framework for visual
tracking algorithms using the time-reversibility constraint,
which has not been studied before. We applied this idea to
the popular KLT feature tracking algorithm and developed a
new KLT algorithm using the time-reversibility constraint.
Extensive experiments are performed to compare the per-
formance between the original KLT and the new KLT. The
results show that the performance of the new KLT algorithm
has been signi�cantly improved. A simple experiment on
tracking large object is also given, which shows that the

proposed strategy is very promising for tracking large ob-
jects. The work on improving other tracking algorithms,
such as mean shift tracking, and optical �ow methods will
be studied in the future.
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