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ABSTRACT | Video cameras are among the most commonly
used sensors in a large number of applications, ranging from
surveillance to smart rooms for videoconferencing. There is a
need to develop algorithms for tasks such as detection,
tracking, and recognition of objects, specifically using distrib-
uted networks of cameras. The projective nature of imaging
sensors provides ample challenges for data association across
cameras. We first discuss the nature of these challenges in the
context of visual sensor networks. Then, we show how real-
world constraints can be favorably exploited in order to
tackle these challenges. Examples of real-world constraints are
a) the presence of a world plane, b) the presence of a three-
dimiensional scene model, c) consistency of motion across
cameras, and d) color and texture properties. In this regard, the
main focus of this paper is towards highlighting the efficient use
of the geometric constraints induced by the imaging devices to
derive distributed algorithms for target detection, tracking, and
recognition. Our discussions are supported by several examples
drawn from real applications. Lastly, we also describe several
potential research problems that remain to be addressed.

KEYWORDS | Detection; distributed sensing; geometric con-
straints; multiview geometry; recognition; smart cameras;
tracking

I . INTRODUCTION
Video cameras are fast becoming ubiquitous for a wide range
of applications including surveillance, smart video conferenc-

ing, markerless human motion capture, animation transfer,
and even some critical tasks such as assisted surgery. Some
of the challenges in building applications for single video
cameras have been studied for more than a decade, and
reliable algorithms for many tasks have been realized.
Looking ahead, the challenge is to make these algorithms
and applications robust in the presence of several cameras
(possibly even several hundreds) that are networked.

Distributed sensing using a host of networked smart
cameras raises challenges that can be broadly clustered in
two main areas.

� Distributed Sensing. The image obtained by each
camera depends on its position and orientation,
and hence, in general, is different from that of
other cameras observing the same scene. This
raises the need for designing algorithms that can
efficiently fuse the evidence available at each of
these cameras into a consistent and robust
estimate. Specifically, since we are interested in
object detection, it is important to determine
whether an object is present. If an object is present
within the field of view, it is also of interest to
estimate its pose, appearance, and identity. Typical
objects of interest include humans and vehicles.

� Smart Cameras. Constraints in communication
make it inappropriate to transmit all of the video
data collected at each node across the network.
However, the availability of processing power at
each camera enables the transmission of processed
low-bandwidth information that is sufficient for the
task at hand. This raises two important issues.
What is the nature of the information that needs to
be extracted in each individual Bsmart camera[
node? How does one fuse the information
extracted at the nodes in order to solve detection,
tracking, and recognition tasks in visual sensor
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networks? Power and energy optimization in
distributed smart cameras is another important
challenge that other papers in this issue tackle in
detail.

There are numerous applications of distributed visual
sensing algorithms. We concentrate on the problems of
distributed detection, tracking, and recognition. These
form three integral subsystems of any robust distributed
visual sensing network. The number of cameras connected
in the distributed network can vary greatly: from a few
(less than ten) cameras for household monitoring of the
elderly to tens of cameras to monitor a building and all the
way to hundreds of cameras connected in a traffic
monitoring network. The specific challenges encountered
in each of these applications vary with the number of
cameras that are connected in the network. Nevertheless,
some of the basic principles of algorithm design and
optimization remain the same in all these scenarios.

A. Outline of This Paper
In Section II, we describe the geometric constraints

that are involved in multicamera problems with special
emphasis on those constraints that have a direct impact on
algorithm design for detection, tracking, and recognition
of objects. In Section III, we describe some of the
challenges in object detection from uncalibrated cameras
and describe how the constraint that the scene has a
dominant plane can be exploited to develop distributed
detection algorithms for cameras with overlapping fields of
view. In Section IV, we provide a formal description of the
problem of distributed tracking in a camera network and
describe an optimal multiview fusion algorithm that can
combine evidence from multiple camera views to obtain a
robust estimate of the objects’ location in a three-
dimensional (3-D) world coordinate system. In Section V,
we study the problem of recognition of humans and
vehicles. In particular, we show how to perform object
verification across nonoverlapping views using novel views
synthesized from 3-D models built and propagated across
the network of cameras. We conclude by highlighting
several problems that remain to be solved in the area of
visual sensor networks.

II . GEOMETRIC CONSTRAINTS OF
MULTIPLE CAMERAS
In this section, we introduce the basics of projective
geometry and discuss some of the concepts that are
extensively used for detection and tracking. We do note
that this is not an exhaustive coverage of this topic. An in-
depth discussion of projective geometry can be found in [1]
and [2]. The projective nature of imaging introduces
unique challenges in distributed camera networks. In the
context of detection, tracking, and recognition algorithms,
it becomes important to understand the nature of such
constraints and their impact on these problems.

A. A Note on Notation and
Homogeneous Coordinates

In the rest of this paper, we use bold to denote vectors
and capital letters to denote matrices. Further, we use x, y,
and z to denote quantities in world coordinates and u and v
for image plane coordinates. In addition to this, the
concept of homogeneous coordinates is important. We use
a tilde to represent entities in homogeneous coordinates.
Given a d-dimensional vector u 2 Rd, its homogeneous
representation is given as a ðd þ 1Þ-dimensional vector
~u)‰u; 1�T, where the operator ) denotes equality up to
scale. In other words, ~u)~x $ ~u … �~x, � 6… 0. In simpler
terms, when we deal with homogeneous quantities, we
allow for a scale ambiguity in our representation. The
representation mainly allows for elegant representations of
the basic imaging equations that we discuss next.

B. Central Projection
Central projection is the fundamental principle behind

imaging with a pinhole camera and serves as a good
approximation for lens-based imaging for the applications
considered here. In the pinhole camera model, rays (or
photons) from the scene are projected onto a planar screen
after passing through a pinhole. The screen is typically
called the image plane of the camera. Consider a camera
with its pinhole at the origin and the image plane aligned
with the plane z … f . Under this setup, a 3-D point
x … ðx; y; zÞT projects onto the image plane point
u … ðu; vÞT , such that

u … f
x
z

; v … f
y
z

: (1)

This can be elegantly written in homogeneous terms as
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A more general model of the pinhole camera allows for
the pinhole to be at an arbitrary position and the image
plane oriented arbitrarily. However, we can use a simple
Euclidean coordinate transformation to map this as an
instance of the previous one. Finally, the camera might
have nonsquare pixels with image plane skew. This leads
us to a general camera model whose basic imaging
equation is given as

~u)K‰R t�~x … P~x (3)

where P is the 3 � 4 matrix encoding both the internal
parameters of the camera K (its focal length, principal
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point, etc.) and the external parameters (its orientation
R and position t in a world coordinate system). ~u and ~x
are the homogeneous coordinate representations of the
pixel in the image plane and the point being imaged in
the real world, respectively. Although central projection
is inherently nonlinear, it can be written as a linear
transformation of the homogeneous coordinates. Finally,
(2) can be obtained from (3) with R … I3 (the identity
matrix), t … 0, and K … diagðf; f; 1Þ.

It is noteworthy that the projection equation of (3) is
not invertible in general. Intuitively, the pinhole camera
maps a 3-D world onto a two-dimensional (2-D) plane, and
hence, the mapping is many-to-one and noninvertible. All
points that lie on a line passing through the pinhole map
onto the same image plane point. This can also be
independently verified by the scale ambiguity in (3). Given
a point on the image plane u, its preimage is defined as the
set of all scene points that map onto u under central
projection. It is easily seen that the preimage of a point is a
line in the real world. Without additional knowledge of the
scene and/or additional constraints, it is not possible to
identify the scene point that projects onto u. This lack of
invertibility leads to some of the classical problems in
computer vision, the most fundamental being establishing
correspondence across views.

C. Epipolar Geometry
Consider two images (or central projections) of a 3-D

world. Given a point uA on the first image of a world point
x, we know that its preimage is a line passing through the
point uA and CA, the pinhole of the camera (see Fig. 1).
Hence, given information about uA on the first image, all

we can establish is that the corresponding projection of the
point x on the second image plane uB lies on the
projection of the preimage of uA onto the second image
plane. Since the preimage of uA is a line, the projection of
this line onto view B gives the line LðuAÞ, the epipolar line
associated with uA. Thus, the epipolar geometry constrains
corresponding points to lie on conjugate pairs of epipolar
lines.

In the context of multiview localization problems, the
epipolar constraint can be used to associate objects across
multiple views [3]. Once we obtain reliable correspon-
dence across multiple views, we can triangulate to localize
objects in the real world. However, correspondences based
on epipolar constraint alone tends to be insufficient, as the
constraint does not map points uniquely across views. In
general, all points lying on the epipolar line are potential
candidates for correspondence.

D. Triangulation
In many detection and tracking applications, once we

have correspondences between object locations across
views, we are interested in localization of these objects in
scene coordinates. Let us assume that the same object has
been detected in two views (A and B) with camera center
CA and CB at image place locations uA and uB, as shown in
Fig. 2. In this case, the basics of projective imaging
constrains the object to lie on the preimage of the point uA
(the line connecting CA and uA). Similarly, the object must
also lie on the preimage of uB in view B. Therefore,
estimating the true location of the object amounts to
estimating the point of intersection of these two lines. In a
general scenario with several cameras, each camera gives

Fig. 1. Consider views A and B (camera centers CA and CB) of a scene with a point x imaged as uA and uB on the two views. Without any
additional assumptions, given uA, we can only constrain uB to lie along the image of the pre-image of uA (a line). However, if the world were
planar (and we knew the relevant calibration information), then we can uniquely invert uA to obtain x and reproject x to obtain uB.
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rise to a line and estimating the object’s location involves
computing the point of intersection of these lines. In the
presence of noisy measurements, these lines do not
intersect at a single point and error measures such as
sum of squares are used to obtain a robust estimate of the
location of the object. This is called triangulation [4]. The
drawback of the triangulation approach is that it requires
correspondence information across cameras, which is
difficult to obtain.

E. Planar Scenes and Homography
There is one special scenario when the imaging

equation becomes invertible, and that is when the world
is planar. Most urban scenarios form a good fit as the
majority of actions in the world occur over the ground
plane. This makes it a valid assumption for a host of visual
sensing applications. The invertibility can also be effi-
ciently exploited by algorithms for various purposes. As an
example, consider the correspondence problem that we
mentioned earlier. Under a planar world assumption, the
preimage of a point becomes a point (in most cases) being
the intersection of the world plane and the preimage line.
This implies that by projecting this world point back onto
the second image plane, we can almost trivially find
correspondence between points on the two image planes.
This property induced by the world plane, that seemingly
allows for finding correspondences across image planes, is
referred to as the homography induced by the plane.

Consider two views of a planar scene labeled view A
and view B. We can define a local coordinate system at
each view. The same scene point denoted as xA and xB on

the two coordinate systems is related by a Euclidean
transformation

xB … RxA þ t: (4)

Here, R (a rotation matrix) and t (a 3-D translation
vector) define the coordinate transformation from A to
B. Let us assume that the world plane has an equation
nTxA … d, with d 6… 0.1 For points that lie on the plane,
we can rewrite (4) as

xB … RxA þ t
nTxA

d

… R þ
1
d

tnT
� �

xA: (5)

In each local camera coordinate system, we know
that ~u)K‰R t�~x [see (3)] with R … I3 and t … 0.
Therefore, ~uB)KBxB and ~uA)KAxA, which gives us

K�1
B ~uB) R þ

1
d

tnT
� �

K�1
A ~uA

~uB) H~uA; where H … KB R þ
1
d

tnT
� �

K�1
A : (6)

1When d … 0, the plane passes through the pinhole at A, thereby
making the imaging noninvertible.

Fig. 2. Consider views A, B, and D of a scene with a point x imaged as uA, uB, and uD on the views. We can estimate the location of x by
triangulating the image plane points as shown in the figure. At each view, we draw the preimage of the point, which is the line joining the
image plane point and the associated camera center. The properties of projective imaging ensure that the world point x lies on this preimage.
Hence, when we have multiple preimages (one from each view), the intersection of these lines gives the point x.
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This implies that a point in view A, uA maps to the
point uB on view B as defined by the relationship in (6).
The 3 � 3 matrix H [in (6)] is called the homography matrix
or just the homography. Also, note that H (like P) is a
homogeneous matrix, and the transformation defined by it is
unchanged when H is scaled. Further, H is invertible when
the world plane does not pass through pinholes at either of
the two views. This is easily verified, as our derivation is
symmetric in its assumptions regarding the two views.

Finally, the premise of the induced homography
critically depends on the fact that the preimage of a point
on the image plane is a unique point on the world plane.
Suppose we use a local 2-D coordinate system over the
world plane; the image plane to world plane transforma-
tion (from their respective 2-D coordinate systems) can be
shown to be a projective transformation, which, like
before, can be encoded as a 3 � 3 homogeneous matrix,
say, H�. This transformation is useful when we want to
estimate metric quantities, or quantities in a Euclidean
setting. The most common example of this is when we
need to localize the target in the scene coordinates.

Computing the image plane to world plane transfor-
mation H� is a challenging problem that is typically done
by exploiting properties of parallel and perpendicular lines
on the planes. Typically, this requires manual inputs such
as identifying straight lines segments that are parallel.
While this is not always possible, many urban scenes (such
as parking lots, roads, buildings) contain such lines, which
makes it easier to estimate the transformation H�, at least
in a semisupervised way. Computing H�, as it turns out, is
identical to a metric rectification of the image plane. Many
such techniques are illustrated in [1].

III . DETECTION
The first and foremost task in distributed visual sensing is to
detect objects of interest as they appear in the individual
camera views [5]–[7]. In general, this is a very challenging
task since objects belonging to the same class (say, humans,
for instance) can have significantly different appearances
in the images because of factors such as clothing,
illumination, pose, and camera parameters. Object detec-
tion in images and video may be achieved using one of two
major approachesVa static feature-based characterization
of the objects of interest or object motion as a cue to detect
objects. Several recent approaches have been developed for
object detection and recognition in images and videos, and
these approaches typically involve maintaining a model for
the objects of interest in the form of a set of static features
and possibly a model for the spatial relationship between
the various features. Given a test image, object detection is
then decomposed into two stepsVfinding features in the
test image and then validating whether the set of visible
features in the test image suitably explains the presence of
the object in the image. One problem with adopting any
such approach for video is that these approaches are

computationally intensive and it would be inefficient
especially when the number of objects is large. Secondly,
these approaches also require a training set of images in
which the objects of interest have been labeled. This would
mean that objects not previously modeled would not be
detected in a test sequence. Therefore, we will not discuss
these methods in the rest of this paper.

In typical visual sensing scenarios, the objects of
interest are those that are moving. Detection of moving
objects is a much easier task, because object motion
typically leads to changes in the observed intensity at the
corresponding pixel locations, and this change in intensity
can be used to detect moving objects. The challenge in a
single camera setup is to associate groups of coherently
moving nearby pixels to a single object. In multicamera
networks, it also becomes necessary to associate detected
objects across camera views.

A. Background Modeling for Moving
Object Detection

Detection of moving objects is typically performed by
modeling the static background and looking for regions in
the image that violate this model. The simplest model is
that of a single template image representing the static
background. A test image can then be subtracted from the
template and pixels with large absolute difference can be
marked as moving. This simple model introduces the idea
of background subtractionVessentially the process of
removing static background pixels from an image.

B. Background Subtraction
Traditionally, background subtraction is posed as a

hypothesis test [8] at each pixel, where the null hypothesis
H0 is that the pixel belongs to the background model Bt and
the alternate hypothesis H1 is that the pixel does not belong
to Bt. Here, the subscript t is used to denote time, and
hence Bt represents the background model at time t, and It
the image at time t.

Given the hypothesis test defined as

H0 : Ii
t 2 Bi

t ðpixel is backgroundÞ
H1 : Ii

t 62 Bi
t ðpixel is NOT backgroundÞ (7)

the likelihood ratio associated with the hypothesis test is
defined as

Pr Ii
tjBi

t
� �

1 � Pr Ii
tjBi

t
� �]H0

H1
�: (8)

Ii
t and Bi

t correspond to the ith pixel of the image and
background model, respectively, and � defines the
threshold whose value is decided based on a desired
false alarm or misdetection rate.
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The likelihood ratio test defined in (8) is equivalent to

Pr Ii
tjB

i
t

� �
]H0

H1
� …

�
1 þ �

: (9)

As an example, consider a simple background model,
where Bt … B0 is an object-free static background image.
For common models used in the hypothesis test, the
likelihood ratio test takes the form

Ii
t � Bi

0

�� ��yH0
H1

�0: (10)

This intuition behind this test is that the error term
jIi

t � Bi
0j will be very small at pixels that correspond to

static objects, while this term will be large for pixels
corresponding to moving objects. Fig. 3 shows an observed
image, the corresponding background model, and their
difference. As seen, this difference is very small except in
locations corresponding to the moving person and the
moving car. This difference image can be used to estimate
the set of pixels that correspond to moving objects.

C. Common Background Models
However, a simple background model such as a fixed

template ðBt … B0Þ would be susceptible to global changes
in the environment due to lighting, time of the day,

Fig. 3. Use of geometry in multiview detection. (a) Snapshot from each view. (b) Object-free background image. (c) Background subtraction
results. (d) Synthetically generated top view of the ground plane. The bottom point (feet) of each blob is mapped to the ground plane
using the image-plane to ground-plane homography. Each color represents a blob detected in a different camera view. Points of different
colors very close together on the ground plane probably correspond to the same subject seen via different camera views.
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weather effects, etc. Ideally, we would like the following
from our detection algorithm:

� adaptive to global changes in the scene, such as
illumination or camera jitter;

� resilient to periodic disturbances (such as tree
movement due to wind or rain).

There exist a host of algorithms that work very well in
many scenarios [5]–[7]. One simple extension of the static
model is by modeling each pixel as Gaussian distributed
with mean Bi

t and variance �2
i;t.

The background model is defined as

Pr Ii
tjBt
� �

/ exp �
Ii
t � Bi

t
� �2

2�2
i;t

 !

: (11)

The model defined in (11) extends the simple static
background model by allowing for a variance term �2

i;t at
each pixel. Effectively, this corresponds to using a different
threshold at each pixel, one that depends both on � and on
the variance �2

i;t. Such models are useful in handling
dynamic scenes with significant clutter. The means Bi

t and
variances �2

i;t are typically updated in a manner that
attempts to keep the background model object-free [6].

Another background model that robustly handles
periodic background disturbances is the mixture of
Gaussians (MoG) model [7]. This model adaptively learns
an MoG distribution at each pixel. The multimodality of
the underlying distribution gives the ability to capture
repetitive actions as part of the background. An adaptive
learning method can be used to keep track of global
changes in the scene. As before, given a new image, we can
compute the likelihood image and threshold it to obtain
pixels that violate the background model.

D. Using Homography for Multiview Localization
At each individual camera view, background subtrac-

tion results in a binary image that labels each individual
pixel either as belonging to the background or as
belonging to the moving foreground object. Due to
changing texture and illumination conditions in the
scene, the pixels belonging to a single object may lead to
disconnected blobs. Simple heuristics and connected
component analysis is performed on the binary back-
ground subtracted image to label the binary image into a
set of objects with each object occupying a connected set
of pixels (blob) in the image. The location and the
various characteristics of each detected object blob are
stored.

If we assume that the objects are all moving on the
ground plane, then the detected blobs in each camera view
can be transformed to the world plane using the image-
plane to world-plane transformation. Let us assume that Hi
represents the 3 � 3 homogeneous matrix that relates

coordinates in the image plane of camera i to that of a local
2-D coordinate system on the world plane. Also, let Hði;jÞ
denote the homography relating the image plane of camera
i to that of camera j. Therefore, Hði;jÞ … H�1

j Hi. A single
object moving on the world plane will produce
corresponding blobs in each of the cameras that are able
to view the object.

Existing multiview localization algorithms project
features from the detected blob on each of the image
planes to the world plane. These features are typically
representative points [9], lines [10], or the whole blob
itself [11]. The individual choice of the feature depends
heavily on the performance of the background subtraction
algorithms on the underlying data. Consensus across views
is achieved by appropriately fusing these transformed
features in the world plane. This is schematically shown in
Fig. 3.

E. Relaxing the Homography Constraint: Epipolarity
In many cases, we need to study multiview detection

algorithms for more generic scenarios, those in which the
assumption of planar scene is violated. In the absence of
planarity constraint, the image to scene inversion is no
longer unique. In the presence of multiview inputs, it is
possible to triangulate and solve for the intersection of these
line provided the necessary correspondence information
associating points across views is available. Such correspon-
dences are in general hard to solve for, given the weakness of
the epipolar constraint, which usually generates multiple
hypotheses for point correspondences. Typically, these
hypotheses are resolved using additional constraints (such
as the curvature of the trajectory or the appearance of the
object). Fig. 2 and Section II-D illustrate the concept of
triangulation for multiview detection.

IV. DISTRIBUTED MULTIVIEW
TRACKING
Once the objects of interest have been detected in each of the
individual cameras, the next task is to track each object using
multiview inputs. Most algorithms maintain an appearance
model for the detected objects and use this appearance model
in conjunction with a motion model for the object to estimate
the object position at each individual camera. Such tracking
can be achieved using deterministic approaches that pose
tracking as an optimization problem [12], [13] or using
stochastic approaches that estimate the posterior distribution
of the object location using Kalman filters [14] or more
commonly particle filters [15]–[19]. For surveys on visual
tracking of objects, we refer the interested readers to [20], [21].

There exist many application domains that benefit
immensely from multiview inputs. The presence of multi-
view inputs allows for the robust estimation of pose and limb
geometry (markerless motion capture) [22]–[24]. When
targets are at lower resolution, position tracking in scene
coordinates provides information that is useful for higher
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level reasoning of the scene. As an example, [25] uses
multiple cameras to track football players on a ground plane.
Similarly, [9], [10], [26], and [27] consider the problem of
multiview tracking in the context of a ground plane, with
the intent of localization of target position on the plane.

In the case of multicamera systems, another important
challenge is the association of objects across the camera
views. For cameras that have nonoverlapping fields of
views, object association can be achieved by learning the
relationship between patterns of entry and exit in various
camera views [28]. For cameras with overlapping fields of
views, an important issue that arises is fusion of object
location estimates. This requires the use of epipolar
geometry and triangulation in the most general case. As a
special case, in the presence of ground-plane constraint, it
is possible to derive efficient estimators for fusing
multiview information. We discuss this next.

A. Multiview Tracking: Planar World
Multicamera tracking in the presence of ground-plane

constraint has been the focus of many recent papers [9]–
[11], [29]. The key concepts in many of the algorithms
proposed are the following.

� Association of data across views by exploiting the
homography constraint. This can be done by project-
ing various features associated with the silhouette.
The vertical axis from each segmented human is
used as the feature by Kim and Davis [10], while
points features [9], [29] or even the whole silhouette
[11] form alternate choices. These feature(s) are
projected onto a reference view using the homo-
graphy transformation, and consensus between
features is used to associate data across views.

� Temporal continuity of object motion to track.
Typically, a particle filter [9], [10] is used to
temporally filter the data after association. Alter-
natively, [11] builds a temporal consistency graph
and uses graph-cuts [30] to segment tracks.

Since the early work of Smith and Cheeseman [31],
researchers have known that one has to account for the
effect of varying covariances on parameter fusion and
estimation accuracy, especially under highly asymmetric
placement of cameras. Consider, for example, the problem
of location estimation of a point object moving on a plane.
At each camera, background subtraction provides an
estimate of where the object lies. We can now project
the image plane locations to arrive at individual estimates
of the world plane location of the tracked point. In an ideal
noise-free condition, the estimates arising from each of the
cameras would be identical. However, in the presence of
noise corrupting the image plane observations, errors in
calibration, and inaccuracies in modeling, the world plane
location estimates will no longer be identical. We now
need a strategy to fuse these estimates. However, to do so
in a systematic fashion, we need to characterize the
statistical properties of these estimates. Let us suppose that

we have a characterization of the location of the object in
the individual image planes as a random variable. We can
project these random variables to the ground plane using
the projective transformation linking the individual image
planes and the ground plane.

Fig. 4 shows an example of three cameras A, B, and C
looking at a plane �, with the image plane of B parallel to
�. In contrast, the image planes of A and C are
perpendicular to �. Also shown on the image planes of
the cameras are iso-error contours representing the image
plane distribution at each camera. The homographies
between the cameras and the plane � are HA�, HB�, and
HC�, respectively. In this setup, HB� is not fully
projective, defining only an affine transformation, as
opposed to HA� and HC�, which induce strong projective
distortion. We would expect the density on B to retain its
original form (similar error isocontours) when projected
on the plane.

The projective mapping is in general a nonlinear
transformation involving ratios. The statistics of random
variables, when transformed under such a ratio transfor-
mation, change significantly. Given that the projective
transformations linking different views of the same scene
are different, one can expect that the statistics of random
variables on the world plane arising from different views
will necessarily be different, even when the original
random variables are identically distributed.

Given M cameras, and the homography matrices Hi,
i … 1; . . . ; M, between the camera views and the ground
plane, one can derive an algorithm for fusing location
estimates. Let Zi

u be the random variable modeling the
object location on the image plane of the ith camera. Let us
assume that the random variables fZi

ug
M
i…1 are statistically

independent. Now, each of these random variables can
be projected to the world plane to obtain Zi

x, such that
~Z

i
x)Hi ~Z

i
U , i … 1; . . . ; M.

Let us consider the distribution of Zi
x under the

assumption that the Zi
u are Gaussian. Specifically, when

Fig. 4. A schematic showing densities of the image planes of cameras
and their transformations to the ground plane.
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certain geometric properties are satisfied,2 we can show
that the distribution of Zi

x is closely approximated by a
Gaussian distribution [1], [9]. Further, we can relate the
mean and the covariance matrix of the transformed
random variable to the statistics of the original random
variable and the parameters characterizing the projective
transformation. This result is useful for designing strate-
gies to fuse fZi

x; i … 1; . . . ; Mg in an optimal sense. In the
case of multiview localization, if the covariances of the
estimates Zi

x is �i, then the minimum variance estimate
Zmv is computed as

Zmv …
XM

i…1
��1

i

XM

j…1
��1

j

 !�1

Zi
x: (12)

The covariance of Zmv, �mv is given as

�mv …
XM

j…1
��1

j

 !�1

: (13)

We refer the reader to the early works of Smith and
Cheeseman [31], [32], Kanatani [33], and, more recently,
Sankaranarayanan and Chellappa [9].

Hence, given a true object location on the ground
plane, �mv provides an estimate of the maximum accuracy
(or minimum error) with which we can localize the object
on the ground plane given modeling assumptions on the
image plane (see Fig. 5).

Finally, we can embed the concept used in constructing
the minimum variance estimators in formulating dynam-
ical systems that can be used to track objects using
multiview inputs. As before, we efficiently fuse estimates
arising from different views by appropriately determining
the accuracy of the estimate characterized by its covari-
ance matrix. Fig. 6 shows tracking outputs from processing
video data acquired from six cameras. Each object is
tracked using a particle filter, and object-to-data associa-
tions are maintained using joint probability data associa-
tion [34].

This algorithm can be easily implemented in a
distributed sensor network. Each camera transmits the
blobs extracted from the background subtraction algorithm
to other nodes in the network. For the purposes of
tracking, it is adequate even if we approximate the blob
with an enclosing bounding box. Each camera maintains a
multiobject tracker filtering the outputs received from all
the other nodes (along with its own output). Further, the
data association problem between the tracker and the data
is solved at each node separately, and the association with
maximum likelihood is transmitted along with data to
other nodes.

B. Relaxing the Planar Constraint
There exist many scenarios when the objects’ motion is

not restricted to the plane or when the scene deviates
significantly from a plane. In [35], we observe and track

2The required geometric properties reduce to the region of interest
that is being imaged to be far away from the line of infinity in each of the
views (for details, refer to [9]).

Fig. 5. Variance ellipses are shown for the individual image planes. The corresponding color-coded ellipse on the ground plane shows the
covariance when transformed to the ground plane. The ellipse in black (on the ground plane) depicts the variance of the minimum
variance estimator. Note that this estimate performs better than the individual estimates.
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objects (bees) flying freely in an enclosed space, using
inputs from two cameras. The bees are all similar in
appearance and image onto small areas (5–10 pixels). We
cannot perform association using appearance information
in this scenario. Finally, the internal and the external
calibration parameters of the camera might not be
available.

In [35], we exploit the property that critical points of
trajectories are invariant to changes in view [36] for
associating objects across camera views. We consider the
cameras to be independent and first perform background
subtraction as shown in Fig. 3. At each camera, we track
bees by associating the background subtracted blobs
temporally, generating a set of object trajectories in each
camera view. We need to now perform object association
across camera views, i.e., associate each trajectory in the
view of one camera to a unique trajectory in the other
camera view. We use the fact that instants of maximal
curvature in the original 3-D space map to instants of
maximal curvature in the respective image spaces
irrespective of the specific camera view [36]. Therefore,
we first compute the instants of maximal curvature in the
2-D trajectories observed in each view and associate
trajectories using the time instants of maximal curvature.

Fig. 7 shows the spatiotemporal curvature of a flight path
as seen in two different camera views. Since the points of
maximal curvature match irrespective of the view, one can
use this in order to associate targets across camera views.
We can use the correspondences that the trajectory asso-
ciations provide in order to obtain most of the required
calibration parameters and then perform triangulation to
obtain the actual 3-D location of the object in each frame.
Shown in the last row of Fig. 7 are the 3-D flight
trajectories of five different bees flying from a bee hive to a
sugar bowl.

V. RECOGNITION
Having detected and tracked objects using multiple
cameras, we are now in a position to recognize the
objects. Object recognition from images and videos is a
long-standing research problem, and there have been
several competing approaches. In general, algorithms for
object recognition can be divided into two major
divisionsVlocal feature-based approaches and global
approaches. Feature-based approaches detect several
points of interest in each image of an object and describe
the object using descriptors of these local feature points.

Fig. 6. Output from the multiobject tracking algorithm working with input from six camera views. (Top row) Four camera views of a scene
with several humans walking. Each camera independently detects/tracks the humans using a simple background subtraction scheme.
The center location of the feet of each human is indicated with color-coded circles in each view. These estimates are then fused together,
taking into account the relationship between each view and the ground plane. (Bottom row) Fused tracks overlaid on a top-down view of the
ground plane.
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Global approaches describe the object using their global
properties such as shape, silhouette, texture, color,
appearance, or any combination of such descriptors.

A. Global Approaches for Object Recognition
Global methods for object recognition involve the use

of some global property of the object such as color, texture,
shape, etc., for recognition. Such approaches are inher-
ently sensitive to the effect of external conditions such as
lighting, pose, viewpoint, etc. The influence of such
external conditions on the global properties of the object is
usually complex and very difficult to model. Therefore,
one needs additional assumptions about either the 3-D
structure of the objects or the viewpoint of the camera in
order for these methods to be successful.

1) 2-D Appearance Models for Recognition: A simple
feature for classification is to build 2-D appearance models
for each class and use these 2-D appearance models for
classification. Such 2-D appearance models are a natural
choice, specifically while modeling and recognizing planar
or near-planar objects (ignoring effects of self-occlusion)
since the effect of viewpoint on these appearance models is
easily accounted for. In particular, small viewpoint
changes produce affine deformation on the 2-D appear-
ance models. Thus, affine-invariant 2-D appearance
models are common and effective representations for
recognizing planar and near-planar objects. Nevertheless,
the problem with using a single 2-D appearance model is
that when the pose of a 3-D object changes, a simple 2-D
appearance model cannot account for this change in pose.

Fig. 7. Two camera views viewing a scene in which there are several bees freely flying around. The second column shows the background
subtracted images. Note that each object occupies only a few pixels. The spatiotemporal curvature as observed at the two camera views is also
shown. Note how the maxima of the spatiotemporal curvature match irrespective of the camera view. The reconstructed 3-D flight paths are
shown below. (Image courtesy of [35].)
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There are several approaches that use 2-D affine
invariant appearance models for face tracking and
recognition [37]–[42]. As an example, let us consider the
simultaneous face tracking and recognition framework
presented in [41]. A 2-D appearance-based tracker is used
in order to track objects of interest. For each person in the
gallery, a simple 2-D appearance template is stored, which
is an image of the person’s face under uniform illumination
conditions. A particle filter is then used to simultaneously
estimate both the position of the target’s face and the
identity of the individual. The 2-D appearance of the
individual is modeled as a mixture of Gaussians, and
the parameters of the mixture density are estimated from a
training gallery. Each camera first estimates its confidence
with regard to whether the face appears frontal in its view.
This can be achieved using a simple correlation-based
detector with a generic frontal face appearance or other
view-selection methodologies [43]. Assuming that at least
one of the camera views is frontal, this camera then
compares the observed appearance with those stored in the
gallery in order to recognize the individual. The top row of
Fig. 8 shows the stored 2-D appearance templates for the
individuals in the gallery. In the bottom are two images
from a test sequence with the bounding box showing the
location of the target’s face. The image within the
bounding box is matched with the stored 2-D appearance
models in the gallery in order to perform recognition.

2) 3-D Face Tracking With Geometric Face Models: The
problem with 2-D appearance models is that it does not
adequately account for the inherent changes in the feature

that occur due to large pose changes in the video
(especially for nonplanar objects). For applications such
as face tracking and recognition (where the perspective
effects cannot be ignored due to proximity between the
face and the camera), it becomes extremely important to
account for pose changes that occur throughout the video
so that continuous recognition is possible even when there
are few cameras viewing the individual and none of these is
able to obtain a frontal view. One way to account for changes
in pose is to model the face as a 3-D object with a certain
structure and a corresponding texture. Since the variations
in face structure across individuals is at best modest, one can
assume a generic 3-D model for the face with the texture
varying according to the individuals. The texture forms the
cue for identity, while the 3-D generic face model allows
recognition to be performed irrespective of the pose of the
face in the video. There are several competing approaches
for fitting 3-D models to a face in order to perform
recognition. In [44]–[46], a statistical model of 3-D faces is
learnt from a population of 3-D scans, and recognition is
performed after morphing the acquired image to the 3-D
model. Unfortunately, moving from a planar model to
complicated 3-D models also introduces significant issues in
registration between an acquired 2-D image and the 3-D
model. As the number of parameters in the 3-D model
becomes large, this registration task becomes difficult.
Therefore, several approaches have adopted simple param-
eterized 3-D models to model the face, thus keeping the
registration between a 2-D image and a 3-D model simple.

A simple but effective model for the generic 3-D model
of a face is that of a cylinder [47], [48]. The advantage of

Fig. 8. (Top row) 2-D appearance models for the individuals in the gallery. (Bottom row) Two images from a video sequence in which a
person is walking. The target’s face is being tracked, and the image within the bounding box of the tracked face is matched with the
2-D appearance models in the gallery in order to perform recognition.
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using such a simple model is that occlusion analysis
becomes extremely simple, allowing efficient inference
algorithms for estimating the pose of the model at each
frame. Once the pose of the model at each frame is
estimated/tracked at each camera independently, the
image intensities in the original image frame are then
mapped onto the generic 3-D model to obtain the texture
map of the face being tracked. The texture mapped models
obtained at each individual camera node can all be fused to
obtain a complete 3-D model of the face. This texture
mapped model is then compared with the stored texture
maps of all the 3-D models in the gallery in order to
perform face-based person recognition. Another point to
be noted is that since the face is assumed to be cylindrical,
once the pose of the face is estimated, the surface normals
at each of the points on the face are known. This allows us
to extract texture features that are moderately insensitive
to illumination conditions. Therefore, modeling the 3-D
structure of the face in order to perform simultaneous
tracking and recognition allows us to design recognition
algorithms that are robust to both changes in facial pose
and illumination conditions. Fig. 9 shows some of the
results [48] of 3-D facial pose tracking and recognition.
Notice that the pose of the face is accurately estimated in
spite of the significant variations in lighting, pose and also
significant occlusions. The graphical rendering in the last

column shows the cylindrical face model at the pose
estimated from the images in the third column. An
implementation of this algorithm suitable for smart
cameras is discussed in [49].

Another significant advantage of using 3-D face models
for tracking and recognition is that such models can be
easily extended for multicamera applications. Each camera
can independently track faces using its own 3-D face model
while the individual pose estimates can then be appropri-
ately fused either at a central node or in a completely
distributed manner using just local communications. A
joint estimate of the pose can be obtained as a Euclidean
mean of these individual estimates, and this mean can be
efficiently estimated in a distributed network using just
local communications [50]. Unfortunately, the 3-D pose
does not lie in Euclidean space, and therefore the
averaging procedure needs to account for the non-
Euclidean nature of this space. Many methods to average
rotation matrices can be found in [51] and [52]. However,
the convergence properties of such estimation methods,
when used in a decentralized computation framework
(such as the one described in [50]), need to be studied.

B. Feature-Based Methods for Object Recognition
In recent years, feature-based methods for object

recognition have been gaining in popularity. This is

Fig. 9. Tracking results under severe occlusion, extreme poses, and different illumination conditions. The cylindrical grid is overlaid on the
image plane to display the results. The three-tuple shows the estimated orientation (roll, yaw, pitch) in degrees. The second column
shows a cylindrical model in the pose estimated for the sequence in the third column. (Courtesy of [48].)
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